$\begin{array}{lllllllllllllllllllllll}\mathbf{O} & \mathbf{K} & \mathbf{L} & \mathbf{A} & \mathbf{H} & \mathbf{O} & \mathbf{M} & \mathbf{A} & \mathbf{S} & \mathbf{T} & \mathbf{A} & \mathbf{T} & \mathbf{E} & \mathbf{U} & \mathbf{N} & \mathbf{I} & \mathbf{V} & \mathbf{E} & \mathbf{R} & \mathbf{S} & \mathbf{I} & \mathbf{T} & \mathbf{Y}\end{array}$ SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I
 Fall 2000
 Midterm Exam \#2

" choose any 2 from Problems 1, 2, and 5, in addition to Problems 3 and 4"

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Consider a filtered circuit that the output response, $y(t)$, is the time-convolution of the input signal, $x(t)$, graphically shown below, and the impulse response, $h(t)$, where $h(t)=e^{-5 t} u(t)$, please find $y(t)$.

Problem 2:

Show
$\mathrm{Z}[\operatorname{Im} x(k)]=\frac{1}{2}\left(X(z)-X^{*}\left(z^{*}\right)\right)$
where '*" denotes complex conjugate operation.

Problem 3:

Find $X(z)$ for
a) $\quad x(k)=k^{3} u(k)$
b) $x(k)=\left(\frac{1}{2}\right)^{k} u(-k-2)$

Problem 4:

Find $x(k)$ for
a) $\quad X(z)=\frac{1}{z^{2}+1}$
b) $\quad X(z)=\ln \left(\frac{z-1}{2 z}\right)$

Problem 5:

A linear time-invariant discrete-time system is given by the input-output difference equation $y(k)+y(k-1)-2 y(k-2)=x(k)-2 x(k-1)+x(k-2)$.
Find an input $x(k)$ with $x(k)=0, k<0$ that gives the output response $y(k)=2 u(k)-u(k-2)$ with initial condition $y[-2]=2, y[-1]=1$.

